Bac Pro MELEC
 Métier de L'Electricité et de ses Environnements Connectés

TECHNIQUE DE CHANTIER - Réalisation

- LEXIQUE 1
- techniques de tracage 5
- TECHNIQUE DE PERCAGE 6
- tecfinique de montage de l'appareillage 7
- tecfiniques de raccordement de l'appareillage 8
- tecfiniques de passage des conducteurs dans les gaines 9
- procedure de realisation des installations electriques avec DES CONDUITS IRL 11
- SCHEMAS DOMESTIQUES DE BASE (sansprotections) 12
- DIMENSIONNEMENT DES GAINES OU DES CONDUITS. 13
- extraits de la Norme NF C 15-100 du12/2002(couleurs, sections...) 14

A

AIgUILEE : \quad Elément en métal ou en plastique permettant de tracter les conducteurs dans une gaine ou un conduit (en général ce de grande longueur).

Ame : \quad Elément conduisant le courant électrique dans le conducteur (en cuivre ou en aluminium).
Amont: Avant, au-dessus. Son contraire est l'aval.
Appareillage électrique : Matériel électrique assurant, dans un circuit, une ou plusieurs fonctions telles que la protection (fusible), la commande (interrupteur), le sectionnement (coupe-circuit), la connexion (douille).

ARCHITECTURAL: voir schéma architectural.
Aval: Après, au-dessous. Son contraire est l'amont.
Axe de perçage : Désigne l'endroit où le trou doit être percé.

B

BIphasé : \quad Se dit d'un circuit comportant deux phases (400 V).
Boîte dencastrement : Boîte encastrée qui permet de recevoir un interrupteur, une prise électrique...
Borne : Elément permettant de raccorder un ou plusieurs conducteurs.

C

CALIBRE: Désigne l'intensité nominale à laquelle fonctionne un appareillage électrique.
Cartouche fusible : Elément qui crée une faiblesse dans un circuit électrique. Il protège contre les surintensités.
C.C.T.P.: Cahier des Clauses Techniques Particulières qui décrit un installation

Chute de matière: \quad Reste de matière (déchet) après une coupe.
CIRCUIT: Ensemble de conducteurs et de matériels alimentés à partir de la même origine et protégés contre les surintensités par le même dispositif de protection.

Cloison séche : Cloison qui est construite à partir d'une armature métallique ou non et qui est recouverte de plaques de plâtre (placo-plâtre).

Conducteur: Elément conducteur permettant la circulation du courant électrique. Il se compose d'une âme et d'un isolant.

Conduit : \quad Permet d'assurer une protection mécanique aux conducteurs et câbles placés à l'intérieur, en général

Coupe-cIRCuIT : Elément électrique de raccordement qui permet de faire l'isolation électrique de l'alimentation électrique en amont. Il dispose en général une ou plusieurs cartouches fusibles.

Court-CIRCUIT : Courant très élevé de l'ordre du kilo Ampères (1000 A) dû au contact entre deux conducteurs de potentiels différents (phase/neutre,...).

D

Débouchure: \quad Voir chute de matière
DÉNUDER: Enlever la partie isolante d'un conducteur pour ne laisser que l'âme.
Déserrer: Voir sens de dévissage.
Dévissage : Voir sens de dévissage.
DISJONCTEUR: Elément électrique de raccordement qui protège l'installation électrique des surintensités et en général permet de faire l'isolation électrique de l'alimentation électrique en amont.

F

Foret : Outil tranchant en acier qui permet de faire des trous ronds.
Foyer lumineux: Source qui émet ou réfléchit la lumière.

G

Galne: Elément souple (voir conduit).

I

Isolant : Elément non-conducteur.
Interrupteur : Elément qui permet d'établir ou d'interrompre manuellement un courant électrique.
Interdépendance: Représentée par un pointillé dans les schémas architecturaux, elle indique les éléments qui sont reliés entre eux comme un interrupteur à une lampe.

L
LUSTRE: Elément décoratif suspendu, placé en général au centre de la pièce. Il permet d'accueillir une ampoule pour éclairer la salle.

M

Mécanisme : Terme employé par la Société LEGRAND pour indiquer l'élément électrique qui porte les visseries des fixations des conducteurs (interrupteur, boutons-poussoirs...).

Monophasé : Se dit d'un circuit comportant une phase et un neutre (230V).
Multifllaire : Voir schéma multifilaire.

N

Neutre: \quad Conducteur de neutre (bleu).
Niveau: Instrument permettant de vérifier ou de réaliser l'horizontalité ou la verticalité d'un plan.

0

OsSature : \quad Assemblage d'éléments permettant de soutenir des matériaux (plaques de plâtre,...).

P

P.E. :

Conducteur de protection électrique (vertjaune).
Peau:

Phase:
Conducteur de phase (rouge, marron ou noir).
Phase commutée :

Plaque de finition: Elément de finition en plastique (enjoliveur) qui se place au-dessus d'un interrupteur, d'une prise...

Plaque de plâtre: Plaque constituée de plâtre.
Plaquiste:
Point d'attente:
Point de commande :

Point Lumineux :

Posture:

Prise de courant :
Dispositif ou appareillage permettant de raccorder un élément mobile au réseau électrique.

R

Action de lier électriquement deux éléments (mécanisme et conducteur....).
Voir raccordement.
Respect des normes et du savoir-faire.
Action de refaire l'installation électrique en reprenant certains éléments déjà existants (gaines, conducteurs...).

Changement en totalité de l'installation électrique.

S

Schéma architectural : Schéma généralement en vue de dessus qui représente le bâtiment où l'on intervient. Des symboles normalisés y sont placés dessus pour indiquer l'emplacement physique des appareillages électriques et leur interdépendance.

Schéma de câblage: Voir schéma multifilaire.

Schéma domestique : Schéma électrique qui concerne les locaux d'habitations.
Schéma multiflaire: Schéma électrique représentant l'installation électrique avec la totalité des conducteurs.
SCHÉMA UNIFLAIRE: Schéma électrique ne représentant qu'un seul trait, les nombres et les types des conducteurs étant représentés par des symboles placés sur celui-ci.

Scie cloche:

Section dun conducteur :

Sens de dévissage :
Scie, en forme de cloche, s'adaptant sur une perceuse portative pour percer dans des plaques de plâtre des trous ronds qui recevront les boîtes d'encastrement permettant la pose d'appareillages électriques (prise, interrupteur...).

S'exprimant en mm^{2}, elle représente la surface de l'âme (cuivre) du conducteur.
Correspond au sens anti-horaire (ou inverse des aiguilles d'une montre).
Sens de vissage ou de perçage :
SERRER:
Voir sens de vissage.
Socle: Voir prise de courant.
Surcharge :

Surintensités:
Elles sont au nombre de deux :

- la surcharge,
- le court-circuit (Exemple : La phase et le neutre se touchent)..

T

Triphasé :
Se dit d'un circuit comportant trois phases (400V).

U

Uniflalire: Voir schéma unifilaire

V

VISSAGE: Voir sens de vissage.

Matériel nécessaire : - Un crayon papier ou critérium,

- Un mètre ruban de 2 mètres,
- Un niveau à bulle.

Avant-propos: On montrera dans cet exemple les étapes à suivre pour tracer, sur une plaque de plâtre, l'axe d'un trou conformément au plan ci-contre.

Remarque : En général, les cotes présentes sur les plans sont en cm et passent en mètre lorsque l'on dépasse 100 cm.

1/ Pose des cotes horizontales et verticales :

A l'aide du crayon papier et du mètre ruban, il faut porter, sur la plaque de plâtre, une légère marque pour la cote horizontale et la cote verticale (5 mm).

1. Traçage horizontal

2. Traçage vertical
3. Traçage fini

Remarque : Si vous ne devez pas effectuer un tracé à partir d'un angle, pour augmenter la précision de votre traçage vous décalerez votre mètre par exemple de 10 cm et surtout vous ne devrez pas oublier de soustraire à votre cote ces 10 cm .

2/ Traçage précis de la croix avant le perçage :

Toujours à l'aide du crayon papier, et maintenant avec un niveau à bulle, on prolongera les petits traits précédemment tracés pour montrer avec précision le centre du perçage. Afin d'empêcher l'effacement de notre traçage lors d'un déplacement malencontreux du foret de la perçeuse, on fera des traits d'au moins 7 cm .

1. Traçage précis horizontal avant perçage
 avant perçage

2. Traçage précis fini

Matériel nécessaire : - Une perceuse visseuse-dévisseuse,

- Une scie cloche de diamètre adapté à la boîte à poser.

Avant-propos: Après avoir effectué le traçage de l'axe du perçage (voir page 5), on suivra la procédure indiquée cidessous pour effectuer le perçage de la plaque de plâtre.

1. Montage de la scie cloche (dépassement de 1 cm du foret de centrage)

2. Centrage du foret sur le traçage

3. Perçage en gardant l'alignement vertical et horizontal

4. Prendre une posture pour avoir la meilleure stabilité possible lors du perçage et vérifier le sens de rotation de la perceuse (sens de vissage : Ω)

5. Alignement de la perceuse (en horizontal et en vertical)

6. Scie cloche sans ressort:

Faire tomber la chute de plâtre de la scie cloche en faisant des petits à-coups (mise en marche de la perceuse dirigée vers le bas) ou faire levier sur la chute en introduisant un tournevis dans la fente située sur le coté de la scie cloche.
Scie cloche avec ressort: rétablir à la main l'aplomb de la débouchure.

Matériel nécessaire :

- Une boîte d'encastrement
- L'appareillage (support + mécanisme + plaque)
- Un tournevis adapté aux vis

Avant-propos: Après avoir effectué le traçage (page 5) et le perçage (page6), on suivra la procédure indiquée cidessous pour effectuer la pose de la boîte d'encastrement et le montage de l'appareillage électrique.

1. Pose de la boîte d'encastrement en alignant à l'oeil les deux trous de fixation de l'appareillage (faire sortir la gaine) puis serrer les deux vis de fixation de la boîte d'encastrement.

2. A l'aide du niveau à bulle, aligner correctement le support (voir page 5) et ensuite visser les deux vis

3. Placer le mécanisme sur le support en faisant attention aux conducteurs (pose en accordéon)

4. Dévisser les deux vis de fixation du support du mécanisme de façon à pouvoir le mettre en place et revisser légèrement.

5. Dénuder les conducteurs électriques et raccorder le mécanisme (voir page 8)

6. Pour finir, mettre les accessoires de finition si nécessaire et terminer par la pose de la plaque de l'appareillage électrique

TECHNIQUES DE RACCORDEMENT DE L'APPAREILLAGE

Matériel nécessaire :

- Le mécanisme + support + plaque ou le récepteur à raccorder
- Des conducteurs électriques de section et de couleur adaptées
- Une pince coupante
- Une pince à dénuder
- Un tournevis adapté aux vis

Avant-propos: Après avoir effectué le traçage (page 5), le perçage (page 6) et le montage de l'appareillage sur la plaque de plâtre (page 7), on suivra la procédure indiquée ci-dessous pour effectuer le raccordement du mécanisme ou du récepteur.

1. Dénudage correct :

- longueur de dénudage correcte,
- âme non abîmée.

3. Faire le raccordement.

4. Faire sortir tous les conducteurs de la boîte d'encastrement et les dénuder dans les règles de l'art (voir 1.)

5. Plier les conducteurs en accordéon dans la boîte d'encastrement.

Matériels nécessaires: - Conducteurs électriques

- Gaine ou conduit électrique
- Ruban adhésif isolant (chatterton)

Avant-propos: En général, quand l'ossature (rails) et une peau sont posées par le plaquiste, on passe les gaines électriques avec les conducteurs. La procédure ci-dessous montrera les différentes étapes pour passer les conducteurs dans les gaines.

Remarques: - On préfère passer les conducteurs dans les gaines avant qu'elles ne soient posées dans les cloisons.

- Pour des conduits ou des gaines de grande longueur et qui ne comportent pas ou plus l'aiguille métallique, on enfilera une aiguille en plastique ou à défaut un conducteur électrique qui jouera son rôle (Attention si c'est le cas, veillez à toujours faire un crochet au bout du fil pour éviter qu'il ne s'accroche lors de l'enfilage).

Etapes concernant les gaines ou conduits de grande longueur avec aiguille

- Astuce pour éviter de perdre l'aiguille intégrée aux gaines :

1. Faire une encoche à la pince coupante dans la gaine.

2. Coincer l'aiguille métallique dans l'encoche.

- Utilisation d'une aiguille :

1. Après avoir coupé la gaine à la bonne longueur.

2. Dénuder sur 5 cm l'un des conducteurs qui a la plus grande section.

3. Avec du chatterton, attacher les autres conducteurs en dessous du crochet que vous venez de faire.

4. Le retourner en son bout en faisant une boucle.

5. Faire, au moins sur 5 cm de longueur, des tours de chatterton pour maintenir les conducteurs entre eux.

6. Accrocher l'aiguille de la gaine au crochet que l'on a réalisé à l'étape 3.

Etapes pour les gaines ou conduits de petite longueur

1. Aligner les conducteurs (non dénudés) à enfiler dans la gaine, puis faire, au moins sur 5 cm de longueur, des tours de chatterton pour maintenir les conducteurs entre eux.

2. Pour éviter que les conducteurs ne se coincent dans la gaine, il est nécessaire de faire un bout arrondi avec du chatterton.

3. Mettre du chatterton pour éviter que le bout de l'aiguille ne s'accroche dans la gaine (Facultatif, si le bout de l'aiguille a été mis dans le sens opposé à l'enfilage, comme à l'étape 6).

4. Il est possible maintenant de tracter l'aiguille en l'ayant au préalable accrochée à un tournevis (Remarque : Il est préférable d'être à deux pour cette étape, un qui tire sur l'aiguille et l'autre qui fait attention à ce que les conducteurs ne se croisent pas lorsqu'ils pénètrent dans la gaine).
5. Une fois que l'on a environ 20 cm qui sortent de la gaine, on peut couper les conducteurs en laissant encore à peu près 20 cm du côté où I'on a enfilé les conducteurs.

6. Pousser les conducteurs, en faisant attention à ne pas les croiser quand on les enfile dans la gaine.
7. Une fois que l'on a environ 20 cm qui sortent de la gaine, on peut couper les conducteurs en laissant encore à peu près 20 cm du côté où l'on a enfilé les conducteurs.

PROCEDURE DE REALISATION DES INSTALLATIONS ELECTRIQUES AVEC DES CONDUITS IRL

Etapes	Actions	Outillages	Règles et techniques
1	Tracer (voir document ressource)	Niveau Mètre Cordeau Fil à plomb Cill Plan (non obligatoire)	Tracer finement sur le plan de travail les axes des appareillages au crayon papier en vérifiant: - l'exactitude des cotes, - la verticalité et I'horizontalité des tracés. Appeler le professeur
2	Fixer (appareillages)	Vrille Tournevis OEil Niveau (si nécessaire)	Centrer les appareillages par rapport aux tracés, en vérifiant leur aplomb et, si nécessaire : - marquer au crayon leurs trous de fixation, - tracer dans les règles de l'art leurs axes, Retirer l'appareillage. Utiliser la vrille pour faire un préperçage/taraudage. Fixer les appareillages. Appeler le professeur.
3	Fixer (fixations tubes IRL)	Mêtre Vrille Tournevis Coil Niveau (si nécessaire)	Déterminer et tracer l'emplacement des fixations IRL: - les répartir uniformément entre deux éléments; - placer une fixation avant et après chaque appareillage ou accessoire (2 cm en général); - sur des grandes longueurs, on les espacera d'une quarantaine de centimètres. Appeler le professeur. Utiliser la vrille pour faire un préperçage/taraudage Fixer les lyres ou les clipsotubes.
4	$\begin{gathered} \text { Poser } \\ \text { (conduits IRL) } \end{gathered}$	Scie à métaux Lime plate Lime ronde Tournevis	Prévoir 5 mm de conduit à lintérieur des appareillages et des accessoires Couper les conduits à la bonne longueur Ebavurer (intérieur et extérieur) Mettre les conduits en place Laisser l'appareillage et les accessoires ouverts
5	Passer (conducteurs)	Schéma multifilaire (si nécessaire) Mains Aiguille	Utiliser le schéma multifilaire (de détail) si nécessaire. Choisir la couleur et la section de fil adaptées au circuit. Dérouler le rouleau de fil. Couper le fil à la bonne longueur en prenant une réserve d'à peu près 16 cm (soit à peu près 8 cm dans chaque appareillage). Passer les conducteurs et utiliser une aiguille si nécessaire.
6	Raccorder	Pince à dénuder Pince plate Tournevis	Dénuder le conducteur (ne pas entamer l'âme). Raccorder: - l'isolant doit arriver au ras de la borne de raccordement ; - doubler l'âme du conducteur si nécessaire. Ne pas refermer définitivement l'appareillage.
7	Contrôler	OEil	Contrôler visuellement le câblage.
8	Fermer (appareillages)	Tournevis	Assurer l'esthétique définitive. Fermer l'appareillage (Attention à ne pas pincer les conducteurs).
9	Essayer		Appeler le professeur. Procéder aux tests et à la mise en service de l'installation.
10	Dépanner (si nécessaire)	Multimètre Tournevis	Procéder aux dépannages de linstallation (HORS TENSION).
11	Liver		Montrer l'usage de linstallation au client (sur demande).

SCHEMAS DOMESTIQUES DE BASE (sansprotections)

Désignation	Nb de points de commande	Nb de foyers lumineux	Nb de circuits commandés	Type d'appareillages de commande	Schémas de principe
Montage Simple Allumage (S.A.)	1	χ^{2}	1	Interrupteur Va-et-vient câblé en simple allumage	
Montage Double Allumage (D.A.)	1	X^{2}	2	2 interrupteurs Va-et-vient câblés en simple allumage sur un même support	
Montage Bipolaire	1	χ^{2}	2^{3}	2 interrupteurs Va-etvient câblés en simple allumage sur un même support et commandés simultanément	
Montage Va-et-Vient (V.V.)	2	X^{2}	1	2 interrupteurs Va-et-vient	$\rightarrow 0-1$
Montage Va-et-Vient avec permutateur ${ }^{4}$ (V.V. + permutateur ${ }^{4}$)	31	X^{2}	1	2 interrupteurs Va-et-vient et X^{2} permutateur	$\bigcirc \rightarrow$
Montage télérupteur	X^{2}	X^{2}	1	boutons-poussoirs	
Montage minuterie (avec effet)	X^{2}	χ^{2}	1	boutons-poussoirs	
Montage minuterie (sans effet)	X^{2}	X^{2}	1	boutons-poussoirs	

[^0]
DIMENSIONNEMENT DES GAINES OU DES CONDUITS

Introduction :

Pour des raisons de commodité de passage des conducteurs dans les conduits ou les gaines de grande longueur, il est nécessaire de les dimensionner selon la règle dite du "tiers de section" décrite ci-dessous :

La somme des sections totales des conducteurs (isolants compris), est au plus égale au tiers de la section intérieure du conduit qui est appelée SECTION UTILE.

Application :

Si l'on désire mettre dans une boite d'encastrement double une prise de courant et un interrupteur simple allumage, il est donc nécessaire de faire passer dans une gaine ICTA :
-2 conducteurs de $1,5 \mathrm{~mm}^{2}$,
-3 conducteurs de $2,5 \mathrm{~mm}^{2}$.

- Règle du tiers de section, méthode calculatoire
 3 conducteurs de $2,5 \mathrm{~mm}^{2}$ (○) (O)

Calculde section totale isolant compris
pour chacun

Section totale équivalente :

Conduit ICTA Ø 20 mm

$S_{\text {Utile }}=52 \mathrm{~mm}^{2}$ 2
$\mathrm{S}_{\text {Utile }}<\mathrm{S}_{\text {Total }}$ car $52 \mathrm{~mm}^{2}<52,8 \mathrm{~mm}^{2}$

Utile $>S_{\text {Total }}$ car $88 \mathrm{~mm}^{2}>52,8 \mathrm{~mm}^{2}$ Donc conduit $\underline{\varnothing 25 \mathrm{~mm}^{2} \mathrm{OK}}$
 r l'application, par la méthode calculatoire, il est essaire de prendre une gaine de $\varnothing 25 \mathrm{~mm}$.

Section utile et diamètre des gaines ICA et ICTA ou des conduits IRL		
Diamètre	Types de conduits extérieur en mm	
16	IRL	ICA ICTA
20	74	30
25	75	52
32	202	88
40	328	155
50	514	410
63	860	724

- Règle du tiers de section, méthode simplifiée par abaque

Cette méthode rapide se limite aux diamètres des gaines ICA et ICTA ou des conduits IRL en fonction du nombre de conducteur de $1,5 \mathrm{~mm}^{2}$ et $2,5 \mathrm{~mm}^{2}$ qu'ils comportent, limités à douze pour chacun d'eux.

	Nombre de conducteur rigide en $1,5 \mathrm{~mm}^{2}$										
	0	1	2	3	4	5	6	7	8	9	10
E ${ }^{\text {E }}$		16	16	16	16	16	20	20	20	25	25
$\stackrel{\sim}{\sim}$	16	16	16	16	20	20	20	20	25	25	25
¢ 2	16	16	16	20	20	20	25	25	25	25	25
응 3	16	20	20	20	20	25	25	25	25	25	32
- 4	20	20	20	20	25	25	25	25	25	32	32
\%	20	20	25	25	25	25	25	25	32	32	32
6	20	25	25	25	25	25	32	32	32	32	32
$\stackrel{0}{6}$	25	25	25	25	25	32	32	32	32	32	32
\% 8	25	25	25	32	32	32	32	32	32	32	32
产 9	25	25	32	32	32	32	32	32	32	32	32
\% 10	25	32	32	32	32	32	32	32	32	32	40

CA		Nombre de conducteur rigide en $1,5 \mathrm{~mm}^{2}$										
		0	1	2	3	4	5	6	7	8	9	10
E	0		16	16	16	20	20	20	25	25	25	25
i	1	16	16	16	20	20	25	25	25	25	32	32
¢	2	16	20	20	20	25	25	25	25	32	32	32
-	3	20	20	(25)	25	25	25	25	32	32	32	32
	4	20	25	25	25	25	32	32	32	32	32	32
	5	25	25	25	25	32	32	32	32	32	32	32
	6	25	25	32	32	32	32	32	32	32	32	40
-	7	25	32	32	32	32	32	32	32	32	40	40
\%	8	32	32	32	32	32	32	32	40	40	40	40
践	9	32	32	32	32	32	32	40	40	40	40	40
\%	10	32	32	32	32	32	40	40	40	40	40	40

Pour l'application, comme par la méthode calculatoire, on déduit qu'll est nécessaire de prendre une gaine de $\varnothing 25 \mathrm{~mm}$.

- Repérage des conducteurs :

Il est important de distinguer les conducteurs selon leur nature. Dans l'électricité domestique, on utilise les couleurs suivantes:

BLEU : Conducteur NEUTRE
ROUGE, NOIR, MARRON : Conducteur PHASE
VERT / JAUNE : Conducteur P.E. (Protection Electrique)

- Sections des conducteurs :

Les sections des conducteurs des circuits doivent être déterminées en fonction des puissances installées avec les valeurs minimales suivantes (en mm^{2}) :

SECTION DES CONDUCTEURS

NATURE DU CIRCUIT A REALISER	en Cuivre
Eclairage, volets roulants, prises commandées	$1,5 \mathrm{~mm}^{2}$
Ventilation mécanique contrôlée (V.M.C.)	$1,5 \mathrm{~mm}^{2}$ *
Circuit d'asservissement tarifaire, fil pilote, gestionnaire d'énergie,...	$1,5 \mathrm{~mm}^{2}$ *
Prises de courant 16 A circuits non spécialisés : avec 5 socles maximums par circuit	$1,5 \mathrm{~mm}^{2}$ *
avec 8 socles maximums par circuit	$2,5 \mathrm{~mm}^{2}$
circuits spécialisés : Machine à laver, séche linge, four,...	$2,5 \mathrm{~mm}^{2}$
Chauffe-eau électrique non instantané	$2,5 \mathrm{~mm}^{2}$
Cuisinière, plaque de cuisson: monophasé (230 V)	$6 \mathrm{~mm}^{2}$
triphasé (400 V)	$2,5 \mathrm{~mm}^{2}$

* : Obligation d'utiliser des disjoncteurs pour protéger ces circuits (les coupe-circuit à cartouche fusible sont interdits)
- Nombre de socle de prise à compter dans un circuit selon leurs nombres réel dans un même boitier :

Nombre desocles réel par boitier socles à compter sur le circuit 1	1	2	3	4	>4

- Choix des calibres des dispositifs de protection :

Tout circuit terminal doit être protégé par un dispositif de protection qui est soit un fusible soit un petit disjoncteur et dont le courant assigné est égal à la valeur indiquée dans le tableau suivant :

SECTION MINIMALE		
DES CONDUCTEURS	COURANT ASSIGNE DU DISPOSITIF en Cuivre	
\qquadDE PROTECTION Fusibles		
$1,5 \mathrm{~mm}^{2}$	$10 \mathrm{~A}{ }^{(1)}$	$16 \mathrm{~A}, 2 \mathrm{~A}^{(2)}$
$2,5 \mathrm{~mm}^{2}$	16 A	20 A
$4 \mathrm{~mm}^{2}$	20 A	25 A
$6 \mathrm{~mm}^{2}$	32 A	32 A

(1) : Pour certains circuits, il est interdit d'utiliser des fusibles : Voir * du tableau précèdent.
(2) : Seulement pour les circuits suivants :

- Asservissement tarifaire, fil pilote, gestionnaire d'énergie,
- V.M.C., sauf cas particuliers, valeur pouvant être augmentée jusqu'à 16 A .

[^0]: ${ }^{1}$: Chaque permutateur supplémentaire rajoutera un point de commande supplémentaire
 ${ }^{2}$: Multitude, dépend de la surface de la pièce à éclairer
 ${ }^{3}$: Les deux circuits électriques seront commandés simultanément
 ${ }^{4}$: Utilisé lors de la rénovation partielle d'une installation comportant un va-et-vient et si l'on désire rajouter un point de commande supplémentaire

